
gil@isi.edu pagoncal@dia.ucm.es

almost match

exactly

et al.

almost match

Subsumption-Based Matching: Bringing Semantics to Goals

Yolanda Gil Pedro A. Gonz�alez

Abstract

1 Introduction

2 Bringing Semantics to Goals

transport obj

to

(transport (obj (inst-of package)) (to

(inst-of location)))

(defconcept

transport-package-to-location :is (:and transport

(:the obj package) (:the to location)))

Information Sciences Institute

University of Southern California

4676 Admiralty Way

Marina del Rey, CA 90292

Departamento de Inform�atica y Autom�atica

Universidad Complutense de Madrid

Ciudad Universitaria

28040 Madrid, Spain

Matching a posted goal against a library of
rules is a task common in many AI systems.
There are matching algorithms that can per-
form this process with reasonable e�ciency.
However, they are based on the syntactic fea-
tures of goals instead of their semantic mean-
ing. Representing the semantic meaning of
goals can support additional features in match-
ing algorithms and further reasoning about
goals. This paper presents a matching algo-
rithm that uses a semantic goal representation
based on description logic. Each goal is trans-
lated into a description, and matching relies
on the reasoning performed by a classi�er to
determine which rules unify with the posted
goal. An extension of the matcher relaxes the
posted goal to retrieve rules that
the goal based on the subsumption hierarchies
of the domain ontology and the goals. The
matching algorithm has been implemented us-
ing LOOM as the underlying description logic,
and is used routinely as a component of the
EXPECT problem-solving architecture. We
show how it classi�es and retrieves the meth-
ods in EXPECT's domains, and how the re-
laxed matching mode can be used to support
knowledge acquisition.

Matching a posted goal against a library of rules is a
task common in many AI systems, including problem
solvers, planners, and production systems. Two pred-
icates match if their names are the same and if each
argument matches in turn, where two constants match
only if they are equal and a variable matches another
variable or a constant. This approach to matching is
based on syntactic features and treats the predicates and
their arguments solely as tokens. These are impover-
ished representations compared to the knowledge repre-
sentation systems that are currently available, such as
description logics. Another shortcoming of these match-
ing algorithms is their \all-or-nothing" nature, i.e., the

complete expression of the posted goal must be matched
when they return a result. When an exact match

cannot be found, they do not return anything.
This abstract presents a matching algorithm that

uses a semantic goal representation based on description
logic. Each goal is translated into a description, and
matching relies on the reasoning performed by a classi-
�er to determine which rules unify with the posted goal.
Our work stems from the EXPECT project [Swartout
and Gil, 1995; Gil, 1994; Gil and Melz, 1996] (and
its predecessor system EES [Swartout , 1991]),
an architecture for developing knowledge-based systems
that is tightly coupled with LOOM [MacGregor, 1988;
1991], a description logic system. EXPECT represents
domain objects and classes in LOOM, as well as the goals
of the methods to manipulate those objects. We have
also extended the EXPECT matcher to work in a relaxed
mode and retrieve rules that a posted goal
based on the subsumption hierarchies of the domain on-
tology and the goals. This relaxed matching mode can
be used to support knowledge acquisition.
The EXPECT matching algorithm is used routinely as

a component of the EXPECT problem-solving architec-
ture, which we have used to implement transportation
planning and air campaign planning decision aids. The
EXPECT matcher classi�es and retrieves the methods
in these and other domains.

In EXPECT, goals are expressed as verb clauses with an
action name and several roles (as in a case grammar).
The arguments of the goal are typed. The simplest type
is an instance of a concept de�ned in the domain model.
For example, the goal of transporting a package to a lo-
cation can be expressed as a verb with two roles, i.e.,
the verb with a direct object role �lled
by an instance of a package, and a second role �lled
by an instance of a location. We express this goal in
EXPECT as

. Previous versions of EXPECT
represented it with the LOOM concept

, where re-
strictions on the types of the arguments are represented



1 is short for , and is short for
.

et al.

et

al. et al.
action patterns

3 Subsumption-Based Matching

4 Relaxed Goal Matching

1

(defconcept compute-factorial-of-numbers
:is (:and compute

(:the obj (:and concept-description factorial))
(:the of (:and number extensional-instance-set

(:�lled-by instance-name 5)
(:�lled-by instance-name 7)))))

spec-of specialization-of inst-of

instance-of

(defmethod double-number
:goal (double (obj (?n is (inst-of number))))
:result-type (inst-of number))
:method-body (multiply (obj ?n) (by 2)))

(compute (obj (spec-of

factorial)) (of (inst-of number)))

(compute (obj (spec-of factorial))

(of 3))

(compute-factorial-of 3)

(transport (obj (set-of (inst-of package))) (to

(inst-of location))) (transport (obj (p1 p2

p3)) (to (inst-of location)))

(transport (obj (inst-of (and package

(some contents fragile-object))))

(to (inst-of location))) contents

package

(compute (obj (spec-of factorial)) (of (5 7)))

(double (obj 100))

double-number

?n 100

(multiply

(obj 100) (by 2))

(find (obj (set-of (inst-of

seaport))) (of (inst of location)))

(find (obj) (of))

(find)

with restrictions on �llers of the roles, resembling other
approaches such as [Yen , 1991].
However, this kind of de�nition is not enough to rep-

resent EXPECT goal arguments. Besides instances, the
types of goal arguments in EXPECT include concepts,
extensional sets, and intensional sets. Using concepts as
parameter types is useful to make goal expressions more
explicit. For example, the goal of computing the factorial
of a number can be expressed as

with goal in-
stances such as

. Notice that the goal could also be stated
as , which computationally
would yield the same result but its representation is
not very explicit. Goal parameters can also be ex-
tensional or intensional sets. Sets are used to express
goals such as transporting a set of objects to a location,
as in

and in
.

Goals can also contain descriptions of objects. Any
legal LOOM expression for class de�nitions can be
used to specify the type of an argument. For ex-
ample, the goal to transport a package whose con-
tents include some fragile object to a location can
be expressed as

, where is a role of
the concept .
EXPECT translates goal expressions to LOOM def-

initions, following an algorithm described in [Gil
and Gonz�alez, 1996]. For example, the EXPECT
goal
is translated into:

Notice that this translation is done automatically
while in other approaches, such as COMET [Mark
, 1992] and LaSSIE [Devanbu , 1991], it is done

manually.

Given a library of methods, we express the goals that
they can achieve as a LOOM concept as we explained in
the previous section. When a goal is posted, the matcher
expresses it as a LOOM expression, and uses the clas-
si�er to determine which methods have goals that sub-
sume it. In [Gil and Gonz�alez, 1996], we summarize the
algorithm for matching a posted goal against a library of
goals achieved by methods available to the system. The
algorithm returns a list of methods that match the goal
and the bindings for the variables of each method, or-
dered according to the speci�city of their corresponding

descriptions. EXPECT's problem solver tries the most
speci�c one �rst. For example, suppose that we have the
following method (expressed in EXPECT's grammar) to
double a number by multiplying the number by 2:

When a goal such as is posted,
the matcher (1) retrieves and (2) speci�es
that the binding of is . EXPECT then expands the
method body by substituting the binding as

and posting it as a goal.
The concept de�nitions for goals use a subset of

LOOM's representation language. Although reasoning
with LOOM's full representation language is not com-
plete, EXPECT's matcher uses a subset that is complete.

Our relaxed goal matcher is an extension to our approach
that �nds methods that almost match the posted goal.
Since a goal expression can be relaxed in many ways
(e.g., a di�erent action name, di�erent parameter names,
alternative parameter types,...), any method available in
the library would almost match the posted goal in the
extreme. The relaxed matcher works in an interactive
mode where the user speci�es which parts of the posted
goal expression can be relaxed. An alternative would be
to use a similarity metric that exploits proximity within
the subsumption hierarchy (extended with heuristics as
in MRL [Koehler, 1994]). We use the interactive mode
because we built the relaxed matcher to support users in
extending a knowledge base with a knowledge acquisition
tool [Gil, 1994]. To de�ne a new method, a user can try
to �nd an existing one that the user considers similar
to the new method that he or she wants to de�ne, and
use the commands provided by EXPECT's knowledge
acquisition interface to modify the retrieved method.
In order to support the search for similar methods the

relaxed matcher de�nes some additional concepts called
. Action patterns are LOOM concepts

that represent goals with the same action and parame-
ter names and do not specify the types of the param-
eters. For example, if the method library contains a
method to achieve the goal

, the matcher will
de�ne the pattern and the pattern

. These patterns are turned into concepts that
e�ectively impose additional structure on the goal hi-
erarchy which will be used by the relaxed matcher to
guide the search of related methods. The patterns sup-
port navigation from a pattern to other patterns that
are close in the subsumption hierarchy.
The relaxed matcher works essentially as follows.

Given a posted goal that cannot be matched, the user
can expand its pattern to obtain the patterns accessible
from it. When the user accepts one of these accessible
patterns, the process iterates with the patterns accessi-
ble from them. At any point, if a pattern accepted by



c

c

c

�

�

�

�

specialization

chain

et al.

5 Conclusion

Acknowledgements

References

et al.

Communications of

the ACM

Proceedings

of the Second International Conference on Principles of

Knowledge Representation and Reasoning

Proceedings of the Twelfth National Conference

on Arti�cial Intelligence

Proceedings of the Thirteenth Na-

tional Conference on Arti�cial Intelligence

Unpublished manuscript

Proceedings of the

Fourth International Conference on Principles of Knowl-

edge Representation and Reasoning

Proceedings of the 1988 National Conference

on Arti�cial Intelligence

Principles of Semantic Networks: Ex-

plorations in the Representation of Knowledge

et al.

IEEE Transactions on Software Engineering

et al.

IEEE

Expert

In Proceedings of the Ninth Knowledge Acquisition for

Knowledge-Based Systems Workshop

et al.

IEEE Transactions on Knowledge and

Data Engineering

the user has a method associated with it, the method is
presented to the user. The user can also ask the relaxed
matcher to compare the posted goal with a retrieved
goal. The matcher compares two goals by showing how
the action names, parameter names and parameter types
relate to one another. To show the relationship between
two concepts the relaxed matcher �rst �nds their most
speci�c subsumer . It then presents the

of each concept with respect to , which is the or-
dered set of concepts that must be traversed through the
is-a links to reach from the concept. The user can also
browse the goal hierarchy through a graphical interface.

We have presented a system that represents goals ex-
plicitly in a description logic and uses these representa-
tions to match goals to problem-solving methods. The
main advantages of our approach to subsumption-based
matching are:
Goals can be matched with methods to achieve them
based on their semantic meaning, instead of their syn-
tactic structure. This is particularly useful when there
are several alternatives are available to achieve a goal,
because it provides an understanding how each alter-
native relates exactly to the goal.
When a goal cannot be matched with any of the meth-
ods available, it is possible to try to re-express the goal
by reformulating it into a semantically equivalent set
of subgoals that can be matched [Swartout and Gil,
1995]. In other systems, this kind of subgoal expan-
sion has to be explicitly stated.
When no method matches a posted goal (or its equiv-
alent goal expressions,) it is possible to try an ap-
proximate match based on the meaning of the goal
expression to retrieve methods that \almost match"
the posted goal.
Goals can be expressed in a more 
exible manner. The
arguments of goals can be de�nitions of classes and
objects. In other systems only the name of a type can
be given. Also, the arguments can be given in any
order since they can be identi�ed by their case role.
In other representations the order of the arguments is
�xed.
The explicit representation of goals can support addi-

tional types of reasoning besides matching. In EXPECT,
we use the goal representations to do static analysis
of problem-solving knowledge [Swartout and Gil, 1995;
Gil, 1994], natural language generation [Swartout ,
1991], and knowledge acquisition [Gil, 1994; Gil and
Melz, 1996].

We are indebted to current and past members of the EX-
PECT project for many useful discussions and for the de-
sign and implementation of previous versions of the EX-
PECT matcher that inspired this work, in particular to Bill
Swartout, Ramesh Patil, C�ecile Paris, Vibhu Mittal, Bing
Leng, and Marcelo Tallis. We would also like to thank the

members of the LOOM project for their continuing support.
We also thank Kevin Knight, Craig Knoblock, Bob McGre-
gor, Eric Melz, Tom Russ, and Milind Tambe for their sug-
gestions to improve the clarity of this paper. We gratefully
acknowledge the support of the Defense Advanced Research
Projects Agency under contract number DABT63-91-C-0025.
Pedro A. Gonz�alez also received support from the Spanish
Committee of Science and Technology (CICYT) under con-
tract number TIC92-0058.

[Devanbu , 1991] P. Devanbu, R. J. Brachman, P. G.
Selfridge, and B. W. Ballard. LaSSIE: A knowledge-
based software information system.

, 34:35-49, 1991.

[Devanbu and Litman, 1991] P. T. Devanbu and D. J. Lit-
man. Plan-based terminological reasoning. In

, 1991.

[Gil, 1994] Y. Gil. Knowledge re�nement in a re
ective archi-
tecture. In

, Seattle, WA, 1994.

[Gil and Melz, 1996] Y. Gil and E. Melz. Explicit represen-
tations of problem-solving strategies to support knowledge
acquisition. To appear in

, Portland, OR,
August 1996.

[Gil and Gonz�alez, 1996] Y. Gil and P. A. Gonz�alez.
Subsumption-Based Matching: Bringing Semantics to
Goals. .

[Koehler, 1994] J. Koehler. An application of terminologi-
cal logics to case-based reasoning. In

, Bonn, Germany, May
1994.

[MacGregor, 1988] R. MacGregor. A deductive pattern
matcher. In

, St Paul, MN, August 1988.

[MacGregor, 1991] R. MacGregor. The evolving technology
of classi�cation-based knowledge representation systems.
In J. Sowa, editor,

. Morgan
Kaufmann, San Mateo, CA, 1991.

[Mark , 1992] W. Mark, S. Tyler, J. McGuire, and
J. Schlossberg. Commitment-based software development.

18(10):870{
885, 1992.

[Swartout , 1991] W. R. Swartout, C. L. Paris, and
J. D. Moore. Design for explainable expert systems.

6(3):58{64, 1991.

[Swartout and Gil, 1995] W. R. Swartout and Y. Gil. EX-
PECT: Explicit representations for 
exible acquisition.

, Ban�, Alberta,
Canada, 1995.

[Yen , 1991] J. Yen, R. Neches, and R. MacGregor.
CLASP: Integrating term subsumption systems and pro-
duction systems.

, 3(1):25-32, 1991.


